ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225547853

Learning to Troubleshoot: A New Theory-Based Design
Architecture

Article in Educational Psychology Review - March 2006

DOI: 10.1007/510648-006-9001-8

CITATIONS READS
80 2,288

2 authors, including:

\ Woei Hung
’ University of North Dakota
93 PUBLICATIONS 2,062 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Wiley Handbook of Problem-based Learning (co-editor) View project

ot Radiation Protection Technician Training View project

All content following this page was uploaded by Woei Hung on 03 June 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/225547853_Learning_to_Troubleshoot_A_New_Theory-Based_Design_Architecture?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/225547853_Learning_to_Troubleshoot_A_New_Theory-Based_Design_Architecture?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wiley-Handbook-of-Problem-based-Learning-co-editor?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Radiation-Protection-Technician-Training?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Woei-Hung?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Woei-Hung?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Dakota?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Woei-Hung?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Woei-Hung?enrichId=rgreq-cb7c99610b714bfff844236d2b0d7b9a-XXX&enrichSource=Y292ZXJQYWdlOzIyNTU0Nzg1MztBUzoyMzYzMjY1OTk1MjQzNTJAMTQzMzM1NjA2MDY3MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Educational Psychology Review, Vol. 18, No. 1, March 2006 (© 2006)
DOI: 10.1007/510648-006-9001-8

Learning to Troubleshoot: A New Theory-Based
Design Architecture

David H. Jonassen'> and Woei Hung’

Published online: 28 June 2006

Troubleshooting is a common form of problem solving. Technicians (e.g.,
automotive mechanics, electricians) and professionals (physician, therapists,
ombudspersons) diagnose faulty systems and take direct, corrective action to
eliminate any faults in order to return the systems to their normal states. Tra-
ditional approaches to troubleshooting instruction have emphasized either
theoretical or domain knowledge about the system or specific troubleshooting
procedures. These methods have failed to develop transferable troubleshoot-
ing skills in learners. In this article, we propose an architecture for design-
ing learning environments for troubleshooting. The architecture integrates
experiential, domain, and device knowledge in a learning system that en-
ables learners to generate and test hypotheses for every action they take, re-
late every action to a conceptual model of the system, and query experienced
troubleshooters about what they would do. The architecture includes three
essential components: A multi-layered conceptual model of the system that
includes topographic, function, strategic, and procedural representations; a
simulator that requires the learner to generate hypotheses, reconcile the hy-
potheses to the system mode, test the hypotheses, and interpret the results from
the test; and a case library that uses a case-based reasoning engine to access
relevant stories of troubleshooting experiences as advice for the learner. This
novel architecture can be used to develop learning environments for different
kinds of troubleshooting.

KEY WORDS: Cognitive processes; Problem solving; Troubleshooting.

]University of Missouri Columbia, 221C Townsend Hall,Missouri 65211.

2University of Arizona—South, 1140 N Colombo Ave, Sierra Vista,Arizona 85635.

3Correspondence should be addressed to David H. Jonassen , 221C Townsend Hall, Univer-
sity of Missouri Columbia ,Missouri 65211; e-mail: Jonassen@missouri.edu.

77

1040-726X/06/0300-0077/0 © 2006 Springer Science+Business Media, Inc.

78 Jonassen and Hung
WHAT IS TROUBLESHOOTING?

Troubleshooting is among the most common types of problem solv-
ing. Whether troubleshooting a faulty modem, a multiplexed refrigeration
system in a modern supermarket, or communication problems in an adver-
tising agency, troubleshooting attempts to isolate fault states in a system
and repair or replace the faulty components in order to reinstate the sys-
tem to normal functioning. Troubleshooting is normally associated with the
repair of physical, mechanical, or electronic systems. However, organiza-
tional ombudsmen, such as employee relations managers, customer relation
specialists, consumer advocates, public relations specialists, and human re-
source directors are also troubleshooters. These people are responsible for
handling complaints that represent fault states that must be repaired in cus-
tomer relations systems. Individuals in their everyday lives engage in per-
sonal troubleshooting associated with self-change, especially when related
to addictive behaviors (Prochaska et al., 1992). Medical and psychological
diagnoses also involve troubleshooting.

On the continuum of problems from well-structured (algorithms, story
problems) to ill-structured (systems analysis, design), troubleshooting prob-
lems are in the middle (Jonassen, 2000). Troubleshooting problems:

e appear ill-defined because the troubleshooter must determine what
information is needed for problem diagnosis (which data about the
electrical and fuel systems are needed in troubleshooting a car that
will not start)

e require the construction of a robust conceptual model of the system
being troubleshot (how do electrical, fuel, and mechanical systems
interact)

e usually possess a single fault state, although multiple faults may oc-
cur simultaneously (e.g., faulty battery, clogged injector)

e have known solutions with easily interpreted success criteria (part
replacement leads to system restart)

e rely most efficiently on experience-based rules for diagnosing most
of the cases, making it more difficult for novices to learn (mechanics
rely first on experiences for diagnosis)

e require learners to make judgments about the nature of the problem,
and

e vary significantly in terms of system complexity and dynamicity (age,
manufacturer, engine size, reliance on computer controls in the au-
tomobile).

Troubleshooting is predominately a cognitive task that includes the
search for likely causes of faults through a potentially enormous problem

Troubleshooting 79

space of possible causes (Schaafstal ef al., 2000). In addition to fault detec-
tion or fault diagnosis, troubleshooting usually involves the repair or re-
placement of the faulty device. The emphasis in troubleshooting, though, is
on fault diagnosis, which involves a search for the components of the sys-
tem that are producing substandard outputs (cause of discrepancy). Trou-
bleshooters then search for actions that will efficiently eliminate the dis-
crepancy (Axton et al., 1997).

WHAT KNOWLEDGE AND SKILLS ARE REQUIRED TO
TROUBLESHOOT?

Troubleshooting is usually taught as a linear series of decisions that di-
rect the fault isolation. Flowcharts and decision tables are frequently used
to lead the novice troubleshooter through a series of actions that will isolate
the fault. This approach often works with simple troubleshooting problems,
but it is inadequate for training competent or proficient troubleshooters.
This section describes the skills that troubleshooters need to develop in or-
der to move from novice, through advanced beginner, toward competent
performers (Dreyfus and Dreyfus, 1986). Expertise results from years of
reflective practice and is beyond the scope of this article.

In the transition from novice to competent performer, learners con-
struct increasingly rich conceptual (mental) models of the systems they
troubleshoot. Those models contain multiple representations of the system.
As troubleshooters obtain more experience, they rely less on their concep-
tual models and more on the events schemas they construct from their ex-
periences. Boshuizen and Schmidt (1992) showed how with experience in
medicine, domain knowledge becomes encapsulated in clinical experiences.
Schmidt and Boshuizen (1993) showed that acquiring expertise in medicine
begins with rich causal networks of biological and pathophysiological pro-
cesses. Extensive exposure to patient problems embeds their knowledge
into higher-level narrative structures referred to as “illness scripts.” Illness
scripts for automobile mechanics correspond to specific equipment or sub-
system malfunctions on particular brands and vintages of cars. Mechanics
often describe tendencies for specific parts to fail in cars with different ages
or manufacturers. That knowledge is represented as patterns of symptoms
that are normally associated with specific fault states in specific cars. Expe-
rienced troubleshooters recognize the pattern of symptoms associated with
different fault states, which enables the troubleshooter to rapidly activate
solution scripts (Besnard and Bastien-Toniazzo, 1999; Gaba, 1991). Those
event schemas (e.g., illness scripts) that are used to trigger solutions consist
of well-integrated domain knowledge, contextual information, and episodic

80 Jonassen and Hung

memories. What makes these event schemas so resistant to decay is the rich
contextual information that surrounds the various events.

What kinds of knowledge do novices need to construct during the tran-
sition from novice to competent performer? Learning to troubleshoot be-
gins with the construction of a conceptual model for the system that includes
domain knowledge, system or device knowledge, visual-spatial knowledge
of the system or device, procedural knowledge of how to perform tests
and information-gathering activities, and strategic knowledge that guides
search activities. We describe each of these knowledge states next. As the
troubleshooter gains experience, these knowledge types become embedded
within troubleshooters’ memories of their experiences. They come to rely
more on their historical knowledge of problems they have troubleshot than
their conceptual models. Rather than working through a faulty system con-
ceptually, experienced troubleshooters match new problems with their own
event schemas resulting from their experiences and apply the solutions from
those experiences to solve the current problem (Aamodt and Plaza, 1994).
Learning to troubleshoot involves a gradual shift from conceptual knowl-
edge of systems and context-independent knowledge of strategies to per-
sonal, context-dependent memories of similar problems.

Knowledge states

Rasmussen (1984a), for example, argued that troubleshooters must un-
derstand the device or system they troubleshoot at different levels of ab-
straction:

e purpose of the system (represented as production flow models, sys-
tem objectives)

e abstract functional model of the system (represented as causal struc-
ture or information flow topology)

e generalized functions of the system (standard functions and pro-
cesses and control loops)

e physical functions of the system (electrical, mechanical, chemical
processes of the components), and

e physical forms in the system (physical appearance and anatomy, ma-
terial, and form).

The auto mechanic must understand the engine being troubleshot in
terms of the location of all of the components; the flow of fuel, air, wa-
ter, and electricity through those components; and the functions of those
flow states and the reasons for changes in them. Without understanding
the system being troubleshot on those levels, troubleshooters are unable to

Troubleshooting 81

generate adequate fault hypotheses. The multiple representations of prob-
lems that expert troubleshooters possess allow them to generate more fault
diagnosis and solution strategies (Ericsson and Smith, 1991). The follow-
ing kinds of system knowledge are most generally accepted as essential for
troubleshooting.

Domain knowledge

Domain knowledge refers to the general theories and principles upon
which the system or device was designed. For example, Ohm’s law is a foun-
dation principle used to describe the flow of electricity from the battery,
through the starter, and to the spark plugs. Johnson et al. (1995) argued
that theoretical knowledge may not be as important as educators believe
in training competent technical system troubleshooters. Their study found
that there was no difference between high and low troubleshooting per-
formers’ theoretical knowledge of the system. Students’ theoretical knowl-
edge did not predict their competence in troubleshooting a technical system
fault (Johnson et al., 1993). Morris and Rouse (1985) concluded that provid-
ing instruction about theoretical principles is not an effective way to train
troubleshooters. Domain knowledge is a necessary condition for beginning
troubleshooters, but it is not sufficient for learning to become a compe-
tent troubleshooter. Domain knowledge is important when troubleshoot-
ers transfer their skills to different systems (MacPherson, 1998), and do-
main knowledge is necessary for constructing deeper understanding of the
system (Johnson et al., 1995), as reflected in system or device knowledge
(described next).

System/Device knowledge

The primary differences between expert and novice troubleshooters
are the amount and organization of device knowledge (Johnson, 1988a).
Conceptual knowledge of how a systems works is fundamental to the un-
derstanding of any technical system (Chi et al., 1981; Johnson et al., 1995;
Larkin et al., 1980). System or device knowledge is an understanding of
“(1) the structure of the system, (2) the function of the components within
the system, and (3) the behavior of those components as they interact with
other components in the system” (deKleer, 1985; Johnson and Satchwell,
1993, p. 80), and the flow control within the system (Zeitz and Spoehr,
1989). Again, auto mechanics understand how the components (air, fuel,

82 Jonassen and Hung

and electricity) of an automotive system interact with and affect each other.
Skilled troubleshooters are better able to troubleshoot outside their spe-
cialty because they know how the components of any system work, what
their functions are, and how they are related to the system as a whole
(Lesgold and Lajoie, 1991).

System knowledge includes topographic and functional knowledge.
Topographic models of the system are spatial representations of the com-
ponents of a system (Rasmussen, 1984b). Topographic knowledge of au-
tomobile systems would include representations of the location of each
component within the engine or around the automobile. Fuel filters, for
instance, can occupy a wide variety of locations within the engine compart-
ment, depending on the manufacturer and model. Rasmussen showed that
experts search for faulty components by means of topographic represen-
tations of the system being troubleshot (a diagram of the system). In an-
other study, Johnson (1988a) showed that experts reduced problem space
size using a topographic search of the system in an efficient sequence. To-
pographic searches enable skilled troubleshooters to select hypotheses that
bring them closer to the fault. Novices meanwhile generate hypotheses ran-
domly within and outside the problem space. Topographic knowledge pre-
dicted troubleshooting performance (Rowe and Cooke, 1995; Rowe et al.,
1996).

Topographic knowledge is normally conveyed as diagrams depicting
the structure of a system. Manufacturing troubleshooters, for example,
must hold a mental image of the components of the system and their outputs
in order to identify system malfunctions (Axton et al., 1997). More success-
ful topographic models include not only an image or diagram of the physical
characteristics of the system but also different information paths or routes
through the system. So the search for faults often involves testing the sys-
tem along these different information paths. Jonassen and Henning (1999)
used a method described by Tversky et al. (1994) where troubleshooters
generate written protocols depicting a visual tour of the system being trou-
bleshot along various routes. More successful troubleshooters provided
more accurate topographic descriptions of the systems.

Functional knowledge, as opposed to topographic, is the comprehen-
sion of each individual component’s function in a given system and the
causal relationships between the components and their structure (Sembug-
morthy and Chandrasekeran, 1986). For example, functional knowledge of
automobile systems includes understanding how spark timing and valve
timing both affect combustion. Skilled troubleshooters organize their to-
pographic models based on functional descriptions of the device (Gitomer,
1988). Thagard (2000) analyzed the process of diagnosing disease states and

Troubleshooting 83

concluded that physicians’ explanations of diseases use causal networks to
depict the combination of inferences needed to reach a diagnosis. Jonassen
et al. (1996) constructed a causal network of diagnoses used by physicians
diagnosing a hematology disorder (see Fig. 1). When debugging electron-
ics systems, David (1983) found that skilled troubleshooters organize their
models around the causal interactions in the electrical system rather than
the linear organization of the wiring. David recommends representing the
functional organization of the system (how modules interact showing paths
of interaction) so novices learn to trace paths of causality, not the physical
wire itself. When troubleshooting electronics problems, novices focused on
power distribution and the physical layout of radar, whereas experienced
troubleshooters used their understanding of the flow of information (Ten-
ney and Kurland, 1988).

Although both topographic and functional representations of relation-
ships provide the troubleshooter with paths to trace while generating hy-
potheses, novice troubleshooters are more likely to use topographic search
strategies, whereas experienced troubleshooters more commonly use func-
tional representations when troubleshooting (Hoc and Carlier, 2000;
Rasmussen, 1984a). Troubleshooting strategies based on functional knowl-
edge of the operation of the device lead the troubleshooter to the problem
more efficiently.

Performance/Procedural knowledge

Performing troubleshooting tasks, such as measuring voltage or fuel
pressure, conducting tests, and making observations of the operation of dif-
ferent parts, involves procedures that must be known and practiced. Knowl-
edge of these activities allows troubleshooters to carry out the operations
for performing routine maintenance procedures or testing the components
during the troubleshooting process (Hegarty, 1991). Procedural knowledge
is specific to the system and the tools used to troubleshoot it. Therefore, its
application is limited to that particular content or system (Schaafstal and
Schraagen, 1993). Traditionally, mechanics were required to know how to
use voltmeters and pressure gauges to test automotive components. Today,
they attach engine sensors to a computer that automatically tests the en-
gine’s functions.

Strategic knowledge

According to Johnson et al. (1995), strategic knowledge plays an es-
sential role in troubleshooting by reducing the problem space, isolating the

84 Jonassen and Hung

Idiopathic
PUpUA

/

Immune

Alloimm une — e platelat »

thrombocytoenia destruction

Secondary immune
thrombocytopenias

Drug-induced
immune
thrombocytopenia

Disseminated
mmvascy]ar Platelet
coaguwation Nonimmune destruction

. plarelet / or loss
Thrombotic .
S ivsaglosly destruction —~

Hemorrhage or
extracorporeal
perfusion

Hypersplenism
N — >
Hypothermia sequestration

Drug-induced
suppression of
megakaryocytopoiesis

Aplastic

anemia
Marrow ﬁh?k]:z: eytie -
infiltration YEOR

Ionizing
radiation or
toxins
Diminished
Vitamin B12 Platelet

teficiency production
Folie acid
dzficiencv> Tneffective

al

thrombocytopoiesis -

Paroxysm
nocturnal
hemoglobinuria

Cyelic thrombocytopenia
Hereditary thrombocytopenis. /

Fig. 1 Causal model of medical diagnosis

potential faults, and testing and evaluating hypotheses and solutions. Know-
ing what part of the electrical systems to test first when diagnosing a car that
will not start is important strategic knowledge. Strategic knowledge helps
the troubleshooters confirm the hypotheses and solutions they have gen-
erated or seek new alternatives when the existing hypotheses or solutions

Troubleshooting 85

are confirmed false or unfeasible. Schaafstal and Schraagen (1993) classi-
fied strategies used in the troubleshooting process as global strategies or
local strategies. Global strategies are independent of a specific domain con-
tent or system and can be applied across different domains. Local strategies
are the ones that are only applicable to a specific content domain or sys-
tem. Global strategies help the troubleshooter reduce the problem space,
whereas local strategies help the troubleshooter conduct the reduction pro-
cess.

The most prominent global troubleshooting strategy is the serial elimi-
nation strategy (start with component nearest the troubleshooter and trace
backwards). Because of its inefficiency, this strategy is seldom, if ever, rec-
ommended. Johnson (1991) and Brown et al. (1975) identified five com-
monly used global strategies in the troubleshooting process.

1. Trial and error: Randomly attack any section of the system where
the possible fault might have occurred. This strategy is most com-
mon in the performance of novice troubleshooters.

2. Exhaustive: List all the possible faults and test them one by one until
the actual fault is identified. This strategy, similar to serial elimina-
tion, is practical only in simple systems.

3. Topographic: Isolate the fault through identifying a series of func-
tioning and malfunctioning checks following the traces through the
system. The topographic strategy is usually implemented in two
ways, forward or backward. The forward topographic strategy starts
the troubleshooting procedure at a point where the device is known
to be functioning normally and then works toward the fault by fol-
lowing the system. The backward topographic strategy follows the
same procedure but starts at the point of malfunction and then
works backward to the input point (Johnson et al., 1995; Newell and
Simon, 1972).

4. Split-half: Split the problem space in half and check the function-
ing condition to determine in which half the fault is located. This
method reduces the problem space by confirming the faulty section.
The procedure is repeated until the potential faulty area is reduced
to a single component. This strategy is efficient when the faulty sys-
tem is complex and the initial problem space appears to contain sev-
eral potential faults with no strong indication of where the actual
fault lies (David, 1983).

5. Functional/discrepancy detection: Isolate the fault by looking for
the mismatches between what is expected in a normal system op-
eration and the actual behaviors exhibited (Brown et al., 1975).
By detecting the mismatches, the troubleshooter can identify the

86 Jonassen and Hung

components where the difference is located and, in turn, isolate the
actual fault. Performing this strategy requires a thorough integra-
tion of system knowledge (especially the interrelationship between
functional knowledge and behavioral knowledge).

Little research has compared the effectiveness of domain-general ver-
sus domain-specific troubleshooting strategies. Konradt (1995) showed that
domain-general strategies, such as split-half and uncertainty rejection, play
only minor roles in real life troubleshooting. Experienced troubleshooters
rely more on case-based strategies (addressed next), especially in routine
failures.

Experiential knowledge

Research studies have confirmed that experience is the most common
determinant of expertise, and that the recall of historical information is the
most frequent strategy for failure diagnosis (Konradt, 1995). Bereiter and
Miller (1989) found that troubleshooters base their diagnosis on their be-
liefs about the cause once a discrepant symptom is found. Those beliefs are
based on historical information (i.e., experience. They also found that the
most common reason for taking a particular action during troubleshooting
is to test for the most common problem based on experience. Automobile
mechanics, for example, often shorten their diagnostic process by applying
their historical knowledge of specific fault tendencies in certain models or
vintages of cars.

Because of the importance of experiential knowledge, it is es-
sential that learners be required to practice problem-solving tasks.
Kyllonen and Shute (1989) recommend troubleshooting a simulated task
or “walking through” a performance test. With practice, troubleshooters
construct event schemas and rely more on historical information based on
experience.

Capacities

In addition to different knowledge states, there are individual
differences in experience, cognitive abilities, aptitudes, and cognitive
styles related to troubleshooting performance (Morris and Rouse, 1985).
Research has focused on only three of those differences: Work-
ing memory capacity, causal reasoning, and analytical reasoning (field
independence).

Troubleshooting 87
Working memory

Working memory is a short-term memory store that enables humans
to access and temporarily store information needed to complete a task.
Working memory was a predictor of troubleshooting performance (Axton
etal.,1997). Troubleshooting performance degrades when working memory
is exceeded, which imposes greater cognitive load on the learner (Cooper
and Sweller, 1987; Sweller and Cooper, 1985). Cognitive load is intrinsic to
the processing demands of the task (Mayer and Moreno, 2003; Paas ef al.,
2003). The primary cause of cognitive overload is system complexity (Perez,
1991). As systems become more complex, troubleshooting problems place
more demands on working memory, and therefore became more difficult to
troubleshoot (Allen et al., 1996). More time is required to solve the prob-
lems because learners take more actions and repeat more tests. Later, we
describe the use of worked examples as an antidote to some aspects of cog-
nitive load.

Causal reasoning

Causal reasoning describes the cognitive abilities required to under-
stand the co-occurrence of cause—effect relationships (Kelley, 1973) and
the mechanisms responsible for linking the cause to the effect (Hung and
Jonassen, 2006). Causal reasoning enables learners to make predictions, ex-
plain relationships, and infer causes. It is an essential skill in solving any
kind of problem involving multiple, interacting components, such as iden-
tifying causes of discrepancies in system states in order to troubleshoot
(Axton et al., 1997). Perkins and Grotzer (2000) found that students en-
gaged in any kind of meaningful learning must move beyond their simplified
causal reasoning habits.

Analytical reasoning

Analytical reasoning is another important cognitive capacity for trou-
bleshooting. Analytical reasoning is most often described as field indepen-
dence, which describes the extent to which the surrounding perceptual field
influences a person’s perception of items within it. Non-analytical people
(field dependents) find it difficult to locate the information they are seeking
because the surrounding field masks what they are looking for. Analytical
reasoners (field independents) are more adept at disambiguating informa-
tion from its surrounding field, and therefore are better problem solvers

88 Jonassen and Hung

because they are better able to isolate task-relevant information (Heller,
1982; Ronning et al., 1984). In a study of Irish apprentice electricians, Moran
(1986) found that among several individual difference variables, field inde-
pendence was most highly correlated with fault diagnosis and its strongest
predictor. This is because analytics (field independents) are more efficient
hypothesis testers than field dependents while learning and solving prob-
lems (Davis and Haueisen, 1976).

HISTORICAL APPROACHES TO LEARNING TO
TROUBLESHOOT

Because troubleshooting is so commonly performed, many instruc-
tional approaches have been recommended and explored.

Procedural demonstrations

The default instruction for troubleshooting is to demonstrate a se-
quence of troubleshooting actions. Students receiving procedural train-
ing (step-by-step) performed more accurately and conducted more cor-
rect checks than students who received instruction on the system structure
(Swezey et al., 1988). However, students receiving instruction about the sys-
tem structure transferred their learning better than the learners receiving
procedural instruction. Demonstrating a sequence of actions can improve
performance on the modeled task, but those gains do not transfer to other
tasks (Morris and Rouse, 1985). Students following a Fault Isolation Man-
ual that demonstrated required continuity checks on cables, meter reading,
switch setting, and device replacement encountered information overload
and were unable to explain why they performed the steps (Kurland et al.,
1992). Students learn from procedural demonstrations by reproducing op-
erations. If those specific operations fail to reveal the fault, learners who are
taught procedurally do not know what to do. They lack the domain princi-
ples, system knowledge, and strategic knowledge required to transfer their
troubleshooting.

Conceptual (content) instruction
Content approaches to teaching troubleshooting emphasize theoret-

ical and conceptual understanding of the system, removed from any
troubleshooting activity. Unfortunately, conceptual understanding of the

Troubleshooting 89

system alone does not support fault finding (Morris and Rouse, 1985). Stu-
dents receiving only content instruction perform slower, make more er-
rors, and are less successful in troubleshooting (Morris and Rouse, 1985).
Schaafstal et al. (2000) found that instructors who teach conceptual content
could not troubleshoot or transfer their skills from one radar system to an-
other. Their trainees understood details of system but were unsystematic in
their troubleshooting approach.

When used in combination with practice, content instruction should
use a breadth-first organization of instruction that starts with an overview
and covers the functions of subsystems before describing subsystem compo-
nents (Zeitz and Spoehr, 1989). The organization of content affects learn-
ers’ knowledge representation and the degree to which information can be
applied in practice.

Related research indicates that the ways that people have learned
system-related concepts depends on the job that people perform. Flesher
(1993) compared the understandings of design engineers and maintenance
technicians and found that designers’ understanding emphasizes theo-
retical concepts when compared with maintenance technicians who ac-
tually troubleshoot the systems. In fact, Johnson (1989) found that de-
signers required longer to troubleshoot problems than novices because
they were sidetracked by what they perceived as design flaws. Flesher
concluded that theory-based approaches to instruction for troubleshoot-
ing are not the most effective. Learners lack device knowledge and
most of the procedural, strategic, and experiential knowledge required to
troubleshoot.

Rule-based approaches

Another prominent approach to teaching troubleshooting requires
learners to follow a set of rules for troubleshooting, such as decision trees,
flowcharts, or rule-based expert systems that model a series of decisions that
troubleshooters use in order to detect faults. These decision aids are often
presented as job aids or just-in-time instruction. Rouse et al. (1980) devel-
oped an expert system rule base for selecting tests when diagnosing three
different tasks and compared it with human performance. When they used
their rule-base as training, negative transfer resulted. Although novices pre-
fer following rules (Konradt, 1995), learners are not conceptually engaged
when they apply rules; they develop inadequate mental models of the sys-
tem that are required for far transfer.

Other research shows that in troubleshooting practice, rule sequences
are abandoned by troubleshooters. When taught how to use search

920 Jonassen and Hung

algorithms in real-word diagnostic settings, humans resorted to ad hoc hy-
potheses (Hoc and Carlier, 2000). Also, it is difficult to reduce an expert
technician’s actions and knowledge to a set of rules. Experts can easily de-
cide what to do, but they are much less able to provide explicit rules about
why they performed as they did (Means and Gott, 1988; Morris and Rouse,
1985). Learners who learn to troubleshoot by following rule-based decision
aids lack the domain, device, procedural, and alternative forms of experien-
tial knowledge required to become effective troubleshooters.

Simulations

Troubleshooting instruction often provides practice on simulations of
the system being learned. Johnson and Rouse (2001) found that practice
on computer simulations resulted in learning that was comparable to tradi-
tional lecture and demonstration methods. Much earlier, Johnson and Nor-
ton (1992) concluded that simulators alone are insufficient for learning to
troubleshoot.

The most prominent issue related to simulator training is the fidelity of
the simulation. Johnson and Norton (1992) showed that low-fidelity simula-
tor training should be combined with real equipment or a high-fidelity sim-
ulation in order to support learning. Novices need practice on simulators
with reasonable fidelity in order to transfer their troubleshooting skills to
real equipment. Students trained on simulators with high physical and func-
tional fidelity were able to reach correct solutions more quickly than stu-
dents using lower fidelity simulators, and they repeated fewer tests (Allen
etal.,2001). Functional fidelity is an important determinant of performance.

The most important issue related to fidelity is how accurately the sim-
ulator reflects the dynamic interactions within the system. Static simula-
tions of systems are inadequate. In their study of electronics troubleshoot-
ing, Park and Gittelman (1992) found that an animated simulator resulted
in shorter learning times and fewer trials than a static simulator. Per-
formance on simulators predicts transfer performance on equipment to
the degree that the same skills are required (Morris and Rouse, 1985).
Therefore, it is essential that transfer of training be evaluated using actual
equipment.

Intelligent tutoring systems

Numerous military-funded projects have developed intelligent tutor-
ing systems (ITSs) to teach troubleshooting. These complex systems usually

Troubleshooting 91

apply an artificial intelligence formalism (e.g., expert systems, neural nets)
to represent how an expert thinks (expert model), how a learner performs
(student model), and how the instruction should be adapted to the learner’s
progress (tutorial model). The student model is used to recommend instruc-
tional adaptations to individual performance and predict actions of the stu-
dent based on analysis of a particular problem state (Gitomer et al., 1995).
Gitomer et al. (1995) built the Hydrive ITS, in which the student model has
three components:

1. Action evaluator: Assesses actions in simulation,

2. Strategy interpreter: Assesses strategic understanding, looking for
examples of space-splitting, serial elimination, and remove and re-
place strategies, and a

3. Student profile.

Other examples of ITSs developed to support troubleshooting include
Qualitative Understanding of Electric System Troubleshooting (QUEST;
Feurzig and Ritter, 1988); Framework for Aiding Understanding of Log-
ical Troubleshooting (FAULT); and MACH-III on radar troubleshooting
(Kurland et al., 1992). Mach-III provided animated, physical, and functional
diagrams that provide multiple views at different levels; a troubleshooting
tree that organizes procedures in functional hierarchy; a troubleshooting
advisor that guides mechanics; and an explanation system that provides
background information.

ITSs have had different effects on learning to troubleshoot. Johnson
et al. (1993) developed a technical troubleshooting tutor that supported
two troubleshooting activities: Problem space construction and fault di-
agnosis. They found that students working on the tutor had a 78% im-
provement in troubleshooting performance with only 19% more practice.
Another well-known tutor was SHERLOCK, a computer-coached prac-
tice environment for teaching avionics troubleshooting. Its instructional
model was based on dynamic assessment of the learner while troubleshoot-
ing problems (Lajoie and Lesgold, 1992a). After 20-30 hr of troubleshoot-
ing problems, the overall proficiency scores of learners were no better than
for trainees receiving on-the-job training (Pokorny et al., 1996). In another
study, trainees who used SHERLOCK for 20 hr over 2 weeks performed
as well on troubleshooting tasks as experienced technicians (Gott et al.,
1993).

ITSs can be effective for training troubleshooters, however, we have
some concerns. Most I'TSs base their solution paths on an expert model that
provides feedback when the learner performs a discrepant action. However,
expert models in ITSs do not account for fundamental differences in the

92 Jonassen and Hung

ways that novices and experts represent the devices being troubleshot or
the diverse strategies that may be used to approach problems. ITSs are also
very expensive to build and are system-specific, so they are not applicable
to other systems.

Summary

Although numerous instructional approaches for preparing trou-
bleshooters have been developed and researched, none of these in-
structional approaches have integrated the different knowledge states
(especially experiential or historical knowledge) and capacities nec-
essary for learning to troubleshoot. The purpose of this article is
to describe a model for designing environments for learning how
to troubleshoot that integrates the different knowledge states re-
quired to become a proficient troubleshooter. Those environments are
based on a cognitive model of troubleshooting, which is described
next.

COGNITIVE MODEL OF TROUBLESHOOTING

In order to develop a cognitive model of troubleshooting processes,
we begin by reviewing existing conceptions of the troubleshooting process.
The simplest conception of troubleshooting is finding the faulty compo-
nent in a device and repairing or replacing it (Perez, 1991). Troubleshoot-
ing requires generating and evaluating hypotheses (Johnson, 1989) and
taking corrective action (Schaafstal et al., 2000). According to Schaafstal
and Schraagen (2000), troubleshooting consists of four subtasks: Formulate
problem description, generate causes, test, and evaluate. Troubleshooting
as an iterative process of generating and testing that consists of four sub-
processes: Problem space construction, problem space reduction, hypothe-
ses generation/testing (fault isolation/diagnosis process), and solutions
generation/verification (Johnson et al., 1993). While troubleshooting, per-
formers:

e use many observations in a sequence of simple decisions;

e use general search procedures that are not dependent on actual sys-
tem or fault;

e search to find faulty components; and

e search thorough systems to identify appropriate subsystem, state, or
component (Rasmussen, 1984a).

Troubleshooting 93

According to Axton et al. (1997), troubleshooting includes three
phases:

(1) Inspection (assessment of the effectiveness of a system by evaluat-
ing changes in the characteristics of the system’s outputs or com-
ponents;

(2) Troubleshooting, a search for the components of the system pro-
ducing substandard outputs cause; and

(3) A search for actions that will fix the discrepancy (cause-behavioral
sequence relations or repair).

None of these conceptions, however, addresses the role of previous ex-
perience, which is the most frequent strategy for failure diagnosis (Konradt,
1995). Experienced troubleshooters are most efficient because they call on
event schemas that are based on the problems they have solved before. So,
in order to learn how to troubleshoot, we propose that students must learn
how to accomplish the following tasks.

Construct problem space

Constructing problem space is the first step in solving problems
(Newell and Simon, 1972). “Problem solving must begin with the conver-
sion of the problem statement into an internal representation” (Reimann
and Chi, 1989, p. 165). The problem space of any troubleshooting problem
is the mental model of the task environment that the troubleshooter con-
structs. That model should represent the goal state of the system, the nor-
mal states of the system and system components, various fault states, the
system structure (including the components of the system and the relation-
ships among the components), the flow control, and a number of potential
solution paths (including the most viable one and the possible alternatives).
A major difference between proficient and inexperienced repairmen is their
ability to conceptualize the problem space (Gitomer, 1988). The best auto
mechanics possess rich representations of subsystems for each model and
vintage of car they diagnose, and they frequently cite specific fault tenden-
cies for each.

Because they lack system knowledge, novice troubleshooters usually
rely on external problem representations. External problem space repre-
sentations may include flowcharts, schematic diagrams, or functional flow
diagrams (Johnson and Satchwell, 1993). Automotive systems are repre-
sented as wiring diagrams, exploded views of mechanical systems, and
flowcharts of diagnostic procedures. External problem space representa-
tions help novice troubleshooters construct internal representations of the

94 Jonassen and Hung

system. Later, we describe a multi-layered external problem representation
for helping learners that includes topographic description of the system
components, functional descriptions of the system flow, normal behaviors
of the system components, symptoms or behaviors the system exhibit when
operating correctly and faultily, and representations of strategic decisions
required during troubleshooting.

Constructing a mental problem space helps troubleshooters to more
efficiently isolate the subsystem, component, or device in which the fault
is located (Frederiksen and White, 1993). Highly proficient troubleshoot-
ers mentally represent the operations of the system in its normal and faulty
states (Axton et al., 1997). Because troubleshooters (including both experts
and novices) tend not to question their initial problem space once it is estab-
lished (Johnson et al., 1993), it is essential that learners verify their concep-
tual understanding whenever troubleshooting actions are taken. Because
of rapidly changing systems in automobiles and system differences between
different manufacturers, auto mechanics must generate the correct repre-
sentation of the automobile being diagnosed. Mechanics specialize their
work on specific models or manufacturers because they need to construct
fewer problem spaces of those complex systems.

Identify fault symptoms

Based on the normal and fault states for system components repre-
sented in the problem space, troubleshooters must learn to seek out and rec-
ognize faulty components by seeking discrepancies between normal states
and existing states of system components. Troubleshooters use strategic
knowledge about which procedures to perform in order to identify discrep-
ancies. Recognizing symptoms of faulty components is also aided by ex-
perience. The likelihood of symptoms becoming apparent is a function of
historical knowledge.

Diagnose fault(s)

After constructing a problem space, the troubleshooter begins the di-
agnosis process by examining the faulty system and comparing the system
states to similar problems that she or he has solved. If a previous problem is
recalled, the problem space is reduced immediately to include a description
of the old problem.

Experienced troubleshooters categorize problems based on prior expe-
riences. After asking only two questions, the mechanic of one of the authors

Troubleshooting 95

recently diagnosed a faulty air-flow meter, because those meters are histor-
ically the source of problems with the type of automobile being diagnosed.
Once, we interviewed an airline maintenance worker attending to a delayed
flight, who generated a correct hypothesis about an electrical problem on a
DC-9 based on a single symptom, because he “had been working on them
for 25 years.” The first thing that any experienced troubleshooter does when
encountering symptoms is to recall experiences with similar symptoms.

If a previous problem is not remembered and therefore cannot be
reused, then the troubleshooter must generate hypotheses by analyzing the
initial information collected in order to identify discrepancies between ex-
isting states and normal states and by interpreting those discrepancies based
on their conceptual model of the system components. Johnson et al. (1995)
reported that the difference between high- and low-proficient troubleshoot-
ers is their ability to correctly interpret the symptoms they have identified.
Experts form their initial hypotheses based on the preliminary information
acquired during the construction of problem space and the subsequent in-
terpretation (MacPherson, 1998). Newell and Simon (1972) contended that
this interdependence is crucial for distinguishing task-relevant and task-
irrelevant components within the system. Through this process, initial re-
duction of the problem space can be achieved by identifying and excluding
task-irrelevant components. The next phase is to generate and test potential
hypotheses.

Throughout the process of “hypothesis generation and testing” cycles
(Johnson et al., 1995, p. 10), the troubleshooters attempt to further narrow
the problem space and isolate the potential faults. Johnson (1989) explained
that these potential hypotheses are generated to provide possible explana-
tions for the causes of the system fault. Johnson et al. (1995, p. 10) classified
hypotheses into four levels:

(1) System: The hypotheses conjecture the fault at the system level but
do not reduce the problem space beyond the entire equipment or
complete system.

(2) Subsystem: The hypotheses conjecture the fault at the subsystem
level and reduce the problem space to a discrete subsystem within
the complete system.

(3) Device: The hypotheses conjecture the fault at the device level
and reduce the problem space to a limited number of components
within a subsystem.

(4) Component: The most specific type of hypotheses that conjecture
the fault at the component level and result in the identification of
a single component as the potential fault cause.

96 Jonassen and Hung

When all potential hypotheses are generated, these hypotheses have to
be tested and evaluated (Elstein et al., 1978). After troubleshooters make
the initial evaluation, Schaafstal and Schraagen (1993) suggest that trou-
bleshooters prioritize the hypotheses for testing and evaluation based on
the likelihood of the cause of the fault and the interdependence level be-
tween the component and the symptoms. The process of isolating the fault
is a search through the entire system from subsystems, devices, to compo-
nents in a hierarchical manner in order to identify the cause of the fault.

The process of testing hypotheses is not always linear and straight-
forward. Rather, it is iterative and recursive. At each level, two possible
scenarios may occur. If the high-level hypothesis is correct, then the trou-
bleshooter must be able to continue generating more specific hypotheses
about narrower sections of the system until the specific faulty component is
found. For example, if a mechanic diagnosed a problem in the fuel system,
she/he must generate and test hypotheses about which section of the fuel
section is faulty. On the other hand, if the initial, high-level hypothesis is
confirmed as incorrect, then the troubleshooter must detect that he or she
is heading in the wrong direction and amend the hypothesis and reasoning.
Therefore, the ability to evaluate and adjust one’s own hypotheses and test-
ing procedures throughout the diagnostic process is critical to becoming an
effective troubleshooter. As MacPherson (1998) discovered, when experts
found their hypothesis was incorrect, they quickly discarded the false hy-
pothesis and replaced it with an alternative based on the testing results. A
key for troubleshooters in using tests results to evaluate their own hypoth-
esis testing process and modifying it if necessary (Means and Gott, 1988).

Generate and verify solutions

The process of solution generation and verification is similar to hy-
potheses generation and evaluation, although it has not been researched
nearly as extensively. The troubleshooter needs to generate one or more
solutions for repairing the system based on the results of tests. The simplest
solution is to replace a part or module. In many troubleshooting circum-
stances, that is the preferred solution because it requires the least time.
Many contemporary systems are designed so that modules can be easily
replaced, because the modules cost less than the troubleshooter’s time.

If more than one solution option is generated, then the troubleshooter
must select and validate the preferred solution. As with diagnosis, skilled
troubleshooters rely first on their experiences. They know that certain solu-
tions are quicker, easier, cheaper, or more reliable. For inexperienced trou-
bleshooters, the solution generation/validation is also an iterative process.

Troubleshooting 97

The troubleshooter must select the most plausible solution from the set of
solutions generated (Johnson et al., 1993) and determine which best meets
all the constraints (e.g., effectiveness, efficiency, system-specifics, or eco-
nomic consideration). Inexperienced troubleshooters often implement and
then test the effectiveness of different solutions. Based on the test results,
the inexperienced troubleshooter accepts or rejects the selected solution.
This is not the most efficient method of troubleshooting. Experience should
eliminate the need for iterative testing.

During the solution evaluation process, the troubleshooter may find
that additional information is needed for confirming or disconfirming the
selected solution (Frederiksen, 1984). Information may even cause the trou-
bleshooter to reject or modify the original hypothesis or even to revise
the initial problem space. Thus, the troubleshooting process is recursive
throughout the four phases with adjustment or modification as needed
(Johnson, 1989). The solution generation and evaluation process is an es-
sential characteristic in effective troubleshooting (Johnson et al., 1993).

Remember experience

The final step is implicit. Troubleshooters add each troubleshooting
experience to their personal case library of experiences. The more difficult
or vexing the problem solved, the more likely the problem is remembered
(Jonassen and Hernandez-Serrano, 2002).

AN ARCHITECTURE FOR TROUBLESHOOTING INSTRUCTION
AND PERFORMANCE SUPPORT

Based on the conception of troubleshooting that we have articulated,
we propose the following architecture for designing troubleshooting learn-
ing environments (TLEs) to support learning how to troubleshoot (see
Fig. 2). This architecture describes the necessary components of computer-
based learning and performance support systems for learning to trou-
bleshoot. The architecture describes three main system components (a
multi-layered system model, a simulator, and a case library) and two in-
structional components (worked examples and practice).

Our TLE model assumes that the most effective way to learn to trou-
bleshoot is by solving troubleshooting problems. Learning-to-troubleshoot
problems present learners with the symptoms and states of novel problems
and require learners to solve them using a simulator. However, success-
ful troubleshooting cannot be learned without adequate system knowledge,

Jonassen and Hung

Problem
Set
Context
Symptoms
Y \ 4
Case Di System
) 1agnoser
Library & Model
Layers
Fault Ak
S5 toms ction o
F};:l}:xency Hypothesis Pictorial
Actions Probability Topographic
Hypothesis Result State
Results Interpretation Functional
Topography Strategic
Function Action
Strategy
Solution

Fig. 2 Architecture for troubleshooting learning environment

so a multi-layered conceptual model of the system is tied to the simula-
tor so that any topographic, functional, procedural, or strategic informa-
tion about any system component is immediately available while using the
simulator. The system model supports conceptual development of device
knowledge and support the construction of a mental problem space. Ex-
periential knowledge of troubleshooting is provided by a case library of
previously solved problems. We describe each of these components more
fully.

System components of TLE
System model

Because novices, advanced beginners, and even competent performers
rely on conceptual knowledge of the domain in order to generate hypothe-
ses, it is important that they integrate the different kinds of knowledge of
the system being troubleshot into a coherent mental representation. In a
series of studies, Kieras and Bovair (1984) showed that a device model il-
lustrating the specific configuration of the components and controls in a
device enables learners to infer procedures and learn to operate a device

Troubleshooting 929

more rapidly. The system model allows learners to view how the system
functions (including normal functioning and malfunctioning states) so they
can make reasoned diagnoses (which components to test/evaluate based on
which hypotheses/solutions). Learners mentally construct problem spaces
by selecting and mapping specific relations from a problem domain onto
the problem (McGuinness, 1986). In order to do that, multiple kinds of
knowledge must be represented in different ways. Rasmussen (1984a) rec-
ommended a hierarchy of information types that are needed to diagnose a
system, including:

e Functional purposes (production flow models, system objectives)
e Abstract functions (causal structure, information flow topology)
e Generalized function (standard functions and processes, control

loops)

e Physical functions (electrical, mechanical, chemical processes of
components)

e Physical form (physical appearance and anatomy, material, and
form.)

Johnson and Satchwell (1993) showed that providing functional flow
diagrams during instruction improved overall system understanding and
conceptual understanding of causal behavior. Those diagrams should be
simple, showing only the essential components of the system (Johnson and
Satchwell, 1993). Therefore, we recommend a system model that integrates
multiple, simpler representations of the system that overlay each other.
While inspecting any system component on one level, learners can zoom
in or out to other layers.

e Pictorial layer contains pictures of the device or system as it exists.
Associating representations of the system with the actual system is
important (Allen et al., 2001; Johnson and Norton, 1992). Depending
on the complexity of the system, pictures of different parts of the
system may be necessary. Zooming in from the pictorial layer reveals
the topographic layer.

e Topographic layer illustrates the components of the system, their lo-
cations, and their interconnections. Topographic representations are
important because experts search for faulty components by means
of topographic representations of the system (Johnson, 1988a;
Rasmussen, 1984a). Zooming in from the topographic layer reveals
the state layer.

e State layer provides several overlays to the topographic layer. One
overlay conveys normal states or values for each component. These
values enable the troubleshooter to compare actual with normal

100

Jonassen and Hung

values in order to determine whether any component is malfunc-
tioning (Patrick, 1993). The symptom overlay conveys symptoms as-
sociated with each component malfunction. The probability over-
lay conveys probabilities of malfunctions or fault states. Being able
to match existing symptoms and probabilities with a set of stored
symptoms and probable fault states represents a common approach
to fault finding (Patrick, 1993). However, Patrick showed that over-
reliance on symptoms may result in “tunnel vision” obscuring alter-
native hypotheses, so the strategic layer provides alternate strategies
for diagnosing faults. If the troubleshooter is unaware of the alter-
native actions, she/he can zoom in on the strategic layer.

Functional layer illustrates and describes the information, energy,
or product flows through the system and how the components affect
each other. Understanding system functions is more effective than
strategic advice (Patrick and Haines, 1988), however, the combina-
tion should be more effective. The learner can zoom from the func-
tional to the strategic layer to identify optional actions and tests.
Strategic layer consists of rule-based representations of alternative
decisions regarding the states described on the state layer. This layer
consists of diagnostic heuristics that support fault finding (Patrick
and Haines, 1988). Research is needed to determine which method
would provide better strategic support during diagnosis. Finally,
zooming in from the strategic layer reveals the action layer.

Action layer includes descriptions of procedures for conducting var-
ious tests or operations. The primary purpose of this layer of infor-
mation is to serve as a job aid or just-in-time instruction for students
performing various tests or other actions.

An important rationale for such multi-layered representations in the

conceptual model is that they decrease learners’ cognitive load, especially
while diagnosing problems. The multi-layered conceptual model may pro-
vide effective or germane cognitive load (Paas ef al., 2003). However, pro-
viding an external representation of system components and states scaffolds
working memory by off-loading the need to model multiple problem com-
ponents simultaneously. Being able to move through different layers of a
complex conceptual model reduces working memory demands, which can
then be applied to diagnosis.

Troubleshooting 101
Simulator

The heart of the TLE is the simulator (see Fig. 3). This is where the
learner gains experience troubleshooting. The simulator is based on the
PARI system of analysis (Hall et al., 1995). After processing a brief story
about the behavior and symptoms of the device being troubleshot just be-
fore it ceased to work properly, the learner (like an experienced trou-
bleshooter) first selects an action using the pull-down menu at the left of
the screen, such as ordering a test, checking a connection, or trying a repair
strategy. The novice may be coached about what action to take first based
on the symptoms or may select any action. The learner may access the sys-
tem model at any time in order to see the system and its components in their
normal states, how they function, strategic rules for when and how to ob-
serve or test the components, how to perform those actions, and the multi-
modal results from such actions. Jonassen and Henning (1999) showed that
refrigeration technicians often rely on different modalities when conversing
with machines and tools. Each action taken by the troubleshooter illumi-
nates the corresponding system component in the system model.

For each action the learner takes, the learner is required to select a
fault hypothesis that she/he is testing using the pull-down menu to the right
of the action menu in the simulator. This is an implicit form of argumen-
tation requiring the learner to justify the action taken. If the hypothesis is

Trouble Shooter Cases

[

Case 1. Battery dischargel
Case 2. Battery discharge 2
Case 3. Battery failure 1

Case 4. Battery failure 2

Case 5. Starter failure 1

Case 6. Starter failure 2

Case 7. Alternator failure

Case 8. Generator fault 1
Case 9. Ground fault 1
Casel0.Ground fault 2
Casell.Cable fault 1
Casel2.Solenoid failure 1
Casel3.Solenoid failure 2

Fig. 3 The simulator

102 Jonassen and Hung

inconsistent with the action, then feedback is immediately provided ques-
tioning the rationale for taking such an action. The troubleshooter must
also predict the probability that the hypothesis she/he has chosen is actually
the fault.

Troubleshooters at all skill levels have difficulty using probabilistic in-
formation (Morris and Rouse, 1985). Providing practice in predicting prob-
abilities also acts as a metacognitive prompt depicting the troubleshooter’s
certainty in hypothesis selection. If the hypothesis or probability is incon-
sistent with normal states, feedback is provided in a pop-up window and
the troubleshooter is required to select another probability. If the hypoth-
esis and probability selected are within normal boundaries, then the trou-
bleshooter sees the results of that action in the results window. Those results
may be voltage values, pressure readings, temperature, color of an item, or
any other relevant description. The troubleshooter must observe the values
in the results window and then select an interpretation of those results us-
ing the pull-down menu. An interpretation that is inconsistent with results
will also prompt feedback that requires the troubleshooter to select another
interpretation.

The simulator is structured to be constructive and performance based.
Learners must construct a prediction (a kind of theory) about why the sys-
tem is not functioning properly) based on system characteristics and then
test that theory. Rather than learning about troubleshooting, the learner is
engaged in a cognitive apprenticeship (Brown et al., 1989) with a normal
troubleshooter. In most troubleshooting tutoring systems, providing feed-
back usually refers to giving an informative explanation about the correct-
ness of the learners’ actions or responses (Frederiksen and White, 1988).
In this troubleshooting architecture, the troubleshooter gains competence
in interpreting the feedback from the system itself. In real work settings,
troubleshooters cannot rely on the feedback from coaches or tutoring sys-
tems to see if they are pursuing an appropriate diagnosis. Rather, as Means
and Gott (1988) suggested, the troubleshooters need to make decisions for
how to proceed to the next step in the troubleshooting process based on the
behavioral reactions (feedback) that the system exhibits after the test pro-
cedures are completed. In order to troubleshoot independently and compe-
tently, troubleshooters must make such judgments on their own.

Second, the simulator enables dynamic assessment of learner perfor-
mance (Lajoie and Lesgold, 1992b). The actions that a learner takes and
the reasons for those actions, both in terms of the hypothesis and interpre-
tation selected, can provide a model of the learner’s understanding of the
system. The simulator provides clear measures for assessing and evaluating
a learner’s competence. The number of steps and accuracy of hypotheses

Troubleshooting 103

and interpretations provides quantitative information about a learner’s per-
formance and understanding.

Third, the learner is gaining troubleshooting experience while learning.
The results of practice are added to the learner’s case library of fault situa-
tions, so that the learner can learn from personal experience. Case libraries
are described next.

Case library

If the diagnoser is the heart of the TLE, then the case library is the
head (memory) of the TLE. Expert’s knowledge is primarily derived from
cases and concrete episodes (Konradt, 1995), that is, experts use case-based
strategies where symptoms observed in previous situations are collected
and compared with those in similar and current situations.

The case library or fault database contains stories of as many trou-
bleshooting experiences as possible. Each case represents an indexed story
of a context-specific troubleshooting experience. Among technicians, the
primary medium of discourse is stories (Jonassen and Henning, 1999).
The case library consists of stories about how experienced troubleshoot-
ers have solved similar problems that are indexed and made available to
learners. Case libraries, based on principles of case-based reasoning, rep-
resent one of the most powerful forms of instructional support for ill-
structured problems such as troubleshooting (Jonassen and Hernandez-
Serrano, 2002). The case library represents the experiential knowledge of
potentially hundreds of experienced troubleshooters. In addition to pro-
viding potential case problems for solving, the case library can also yield
an abundance of conceptual and strategic knowledge that may be in-
cluded in instruction. When eliciting stories, practitioners naturally em-
bellish their stories with contextual information, heuristics, practical wis-
dom, and personal identities (Henning, 1996; Schon, 1993). Rather than
relying only on a conceptual or theoretical description of a system, when
a learner is uncertain about what action to take or what hypothesis to
make, the learner may access the case library to gain experience vicari-
ously. The TLE can also be programmed to automatically access a rele-
vant story when a learner commits an error, orders an inappropriate test, or
takes some other action that indicates a lack of understanding. Hernandez-
Serrano and Jonassen (2003) showed that access to a case library
when learning how to solve problems improved complex problem-solving
performance.

Building case libraries. In order to analyze stories using CBR, it is nec-
essary first to elicit and capture relevant stories about previously solved

104 Jonassen and Hung

problems from practitioners. The goal of capturing stories is to collect a
set of stories that are relevant to domain problems and the kinds of infor-
mation that was relevant to their solution. Relevance to troubleshooting
means that the story can provide lessons to the troubleshooter in order to
help solve a current problem. In order to collect stories from practitioners,
we recommend the following activities.

1. Identify skilled practitioners in the domain. Skilled practitioners are
those who have some years of experience in solving problems simi-
lar to the ones that you are analyzing.

2. Show the practitioners the problem(s) for which you are seeking
support. That is, present one problem at a time. Present the prob-
lem to the practitioners. The problem representation should include
all of the important components of the problem situation, including
contextual information.

3. Ask the practitioners if they can recall any similar problems that
they have solved previously. They usually can, so allow them to tell a
story about the problem without interruption. Audiotape or (better
yet) videotape their recounting of the story. Following their telling
of the story, analyze their story with the practitioner.

An easier method to acquire stories is to have practitioners who
troubleshoot document each case they are currently solving. These
case descriptions can be dictated or described using a simple survey
form. Technicians and professionals alike are normally required to
complete paperwork. If you are using that documentation to collect
stories, then use a form that is based on index terms described be-
low. Within a matter of months, you should have a substantial case
library.

4. The final step in the analysis process is to index the stories. Indexing
stories is the primary analytic activity in the process of construct-
ing case libraries. Schank (1990) has argued that the “bulk of what
passes for intelligence is no more than a massive indexing and re-
trieval scheme that allows an intelligent entity to determine what
information it has in memory that is relevant to the situation at
hand, to search for and find that information” (pp. 84-85). We tell
stories with some point in mind, therefore the indexing process clar-
ifies what that point is for a given situation. Indexing is the pro-
cess of assigning labels to cases at the time that they are entered
into the case library (Kolodner, 1993). These indexes are used to re-
trieve stories when needed by comparing the problem being solved
to those stored in the case library.

Troubleshooting

105

For each case, identify the relevant indexes that would allow cases to
be recalled in each situation. Probable indexes in a troubleshooting case

library include:

Specific fault description
Initial symptoms observed
Frequency of occurrence

Hypothesis tested
Results of various tests
Topographic component
Functional purpose
Solution strategies

Actions, procedures required to isolate faults

The result of the elicitation and indexing process is a database of trou-
bleshooting stories. Most of the existing case-based reasoning systems re-
trieve cases based on a string-match, a full-text search, a rule-based, or a
nearest neighbor search algorithm. However, the case-based reasoning sys-
tem we developed at the University of Missouri has a more robust and ac-
curate retrieval engine using relevance feedback to fine-tune the retrieval

engine (see Fig. 4).

Each story (case) is indexed by a case vector that contains a set of
attributes. Each attribute has a set of members (values) that function as

Case
Search
Engine

Query Submission

Retriving Cases

User Query
Q=[q 19 278 n]'
/ User Feedback

Retrieval Result
(R

User
Interface

indexes of Database Cases
+

(Case indexing structure in
high dimensinal space)

Fig. 4 Case-based reasoning architecture

106 Jonassen and Hung

options for case archival and retrieval. These members are listed in a pull-
down menu bar. For some attributes, multiple selections are allowed. The
system dynamically creates a query interface for the users by compiling the
information stored in an Oracle relational database. It converts the inputs
from the users into a query case vector (Q) that is then forwarded to the
case search engine. The engine retrieves cases using an advanced nearest-
neighbor algorithm. A meaningful distance measurement is the key to the
search engine. When two cases are close to each other, a small distance
is expected. Therefore, the search engine first computes the distances be-
tween a query case and all database cases. It then ranks the distances to
determine the order of retrieved cases so that users are prompted with the
best matched case first.

Instructional components of TLE

In order to help learners use the TLE, we recommend two essential
instructional supports: Worked examples and practice.

Worked examples

Worked examples illustrate how to use the TLE and also model differ-
ent troubleshooting strategies. If the TLE is entirely online, a pedagogical
agent reads the problem symptoms and models strategies for identifying the
fault state and symptoms, constructing a model of the problem space or ac-
cessing the system model, examining the faulty subsystem, recalling previ-
ous cases, ruling out least likely hypotheses, generating and testing hypothe-
ses, interpreting results, and so on. The agent also models how to relate the
problem symptoms to system components and relate system components in
the troubleshooter to system components in the system model.

Worked examples reduce the heavy cognitive load imposed by the
TLE. Integrating multiple representations in the systems model with the ex-
periences of others while also manipulating the simulator imposes heavy de-
mands on working memory (Paas et al., 2003). Worked examples are useful
for several reasons. First, splitting attention between multiple information
sources interferes with students’ acquisition of schemas representing do-
main concepts (Mwangi and Sweller, 1998; Tarmizi and Sweller, 1988; Ward
and Sweller, 1990). Integrating those representations in a multi-layered
model reduces that effect. Second, effective worked examples should high-
light the subgoals of the problem (Catrambone and Holyoak, 1990). In the
case of troubleshooting, those subgoals include identifying fault symptoms,

Troubleshooting 107

constructing a system model, diagnosing the fault, generating and verify-
ing solutions, and adding experiences to the personal library. This latter
subgoal is a form of self-explanation that reduces the need to look back
at examples and improves performance (Chi et al, 1989; Chi and Van
Lehn, 1991). Worked examples should be used more heavily in the ini-
tial stages of skill development (Renkl and Atkinson, 2003). In the latter
stages, problem-solving practice is superior because intrinsic cognitive load
decreases. Cognitive load decreases as learners develop solution schemas or
scripts. As these schemas are constructed, learners better index knowledge
and reduce cognitive load even more.

Practice

Practice consists of using the simulator to troubleshoot new problems.
During practice, new problems are presented to the learner, who uses the
simulator to isolate the cause of the fault. The learner may access the sys-
tem model or case library in order to understand a system function, deter-
mine normal states, or get advice form an experienced troubleshooter. The
number of practice problems required to develop different levels of trou-
bleshooting skill is not known. That will depend on the complexity of the
system being troubleshot, the abilities and dispositions of the learners, and
a host of individual differences. It is worth noting that every action that
learners take during their practice can be captured and assessed. The pur-
pose of that assessment may be to track progress during learning or merely
to see if the learner is mindfully engaged in the learning process.

Normally, a simple-to-complex practice sequence is recommended.
When troubleshooting problems are practiced in a random order, caus-
ing high inter-task interference, far transfer improves but not near transfer
(De Croock et al., 1998). Learners constructed richer schemata for the sys-
tem they were troubleshooting, which provided faster, more accurate diag-
noses because the learners invested more mental effort during practice. Van
Merrienboer et al. (2003) recommend two kinds of whole task scaffolds,
simple-to-complex versions of the task in order to decrease intrinsic cogni-
tive load and starting with worked examples in order to decrease extraneous
cognitive load.

EVALUATING THE TROUBLESHOOTING LEARNING
ENVIRONMENT

Because the TLE represents a new approach to troubleshooting in-
struction, its efficacy can be evaluated only through implementation and

108 Jonassen and Hung

research. Prior to that, we provide a rational analysis of system functional-
ity and discuss potential advantages and disadvantages of the architecture.

Table I summarizes a functional analysis of the architecture. Early in
the article, we described all of the research-based kinds of knowledge and
reasoning required to solve troubleshooting problems. Table I summarizes
how each of those knowledge types and capacities are addressed by the
TLE architecture. For each TLE component, we identify the nature of the
instructional support provided for each kind of knowledge. Architecture
components can provide information about a kind of knowledge or skill,
engage that knowledge type or skill, scaffold that knowledge type or skill,
or model the use of that knowledge type or skill. Note that different archi-
tecture components provide nearly every kind of instructional support to
every kind of knowledge or skill. That is, there are at least three kinds of
instructional support provided for each kind of knowledge or skill required
to learn how to troubleshoot problems. That indicates a high level of inte-
gration among the components of the environment.

The primary advantage of the TLE is the level of integration in the
design of the environment. That integration enables learners to construct
conceptual understanding and strategic knowledge through practice. Most
researchers have alluded to the necessity of integrating experience, concep-
tual understanding (system knowledge), and strategic activity. Poor trou-
bleshooters generate more incorrect hypotheses and pursue incorrect hy-
potheses longer than good troubleshooters; they are less likely to recognize
critical information, they make fewer useful tests and more useless tests;
they are ineffective in generating hypothesis; and they are poor in exe-
cuting and verifying the results of their work (Morris and Rouse, 1985).
These weaknesses result from poor conceptual understanding of the system
they are troubleshooting and from a lack of integration among hypothesis

Table I Functional Analysis of TLE Components

Working Causal

Theoretical System/ mem- reason- Analytical
domain device Procedural Strategic Experiential ory ing reasoning
System I I I 1 I S I
model
Diagnoser E E I E S S E E
Case li- I I I S S
brary
Worked D D D D D D D D
exam-
ples
Coaching E S S S
Practice E E E E S S E E

Note. I: Informs, E: Engages, S: Supports, D: Demonstrates.

Troubleshooting 109

generation, information gathering (testing), and thinking about the prob-
lem. The multi-layered conceptual model provides the conceptual frame-
work for the troubleshooter, in which learners must integrate information
with hypotheses and strategies in order to proceed.

The analysis required to construct the TLE is case-based or
experience-based. Troubleshooting knowledge is best acquired from expe-
rienced troubleshooters. As described before, their job is to recount stories
of troubleshooting experiences they have encountered and reflect on the
diagnosis and solution. That is a simpler and more reliable cognitive task
than trying to convert those experiences into production rules, neural nets,
or other formalisms for representing knowledge in intelligent tutoring sys-
tems. Often, advisors used to represent expert knowledge in I'TSs have no
direct experience in troubleshooting the systems they are describing (John-
son, 1988a). Their lack of experience often inhibits their troubleshooting
skill (Flesher, 1993). Also, experts can often easily decide what to do, but
they are less able to provide explicit rules about similar situations (Means
and Gott, 1988).

A potential disadvantage of the TLE architecture is the responsibility
that it places on learners. We predict a fairly steep learning curve in the ini-
tial stages of learning. Learning to transfer troubleshooting skills really de-
pends on invested mental effort (De Croock et al., 1998). This is the transfer
paradox: Instructional strategies that lead to better transfer require learners
to work harder or longer before initial performance is acquired. How many
cases must be troubleshot before the learning curve begins to level out de-
pends on the complexity of the system and the causal, analytical capacities
of the learner.

SUMMARY

Troubleshooting is a cognitive process in which novices begin to
learn by constructing and applying conceptual knowledge about a sys-
tem. With experience troubleshooting real cases, competent practitioners
encapsulate relevant domain knowledge and contextual information into
high-level diagnostic scripts (Schmidt and Boshuizen, 1993). Diagnosis for
proficient performers and experts becomes a classification activity where
troubleshooters search their event schemas in order to recognize different
fault states. Learning to troubleshoot represents a shift from conceptual un-
derstanding of the system to an experiential understanding of the process.

In this article, we have described an architecture for developing en-
vironments to support learning how to transition from conceptual knowl-
edge of a system to experiential knowledge. This architecture formalizes

110 Jonassen and Hung

the essential role of experience in learning to troubleshoot using a case li-
brary of troubleshooting stories and a case-based reasoning engine to ac-
cess descriptions of relevant troubleshooting experiences. The environment
also integrates a diagnostic simulator with a multi-layered conceptual rep-
resentation of the system being troubleshot. As we have shown, the knowl-
edge that is constructed by troubleshooters in training moves from domain
to device to experiential knowledge. This architecture is unique because
it integrates all of those knowledge representations and the activities that
help construct each kind of knowledge. Although this architecture has not
yet been empirically validated, it provides a unique blueprint for develop-
ing online troubleshooting learning environments and performance support
systems, and for researching the relative importance of those conceptual
components across different kinds of troubleshooting problems.

REFERENCES

Aamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications 7(1), 39-59.

Allen, J. A., Hayes, R. Y. T., and Buffardi, L. C. (2001). Maintenance training simulator fidelity
and individual differences in transfer of training. In Sweezey, R. W., and Andrews, D.
H. (eds.), Readings in Training and Simulation: A 30-Year Perspective, Human Factors
Society, Santa Monica, CA, pp. 272-284.

Allen, J. A., Terague, R. C., and Carter, R. E. (1996). The effects of network size and fault in-
termittency on troubleshooting performance. [EEE Trans. Syst. Man Cybern. 26(1): 125—
132.

Axton, T. R., Doverspike, D., Park, S. R., and Barrett, G. V. (1997). A model of the
information-processing and cognitive ability requirements for mechanical troubleshoot-
ing. Int. J. Cogn. Ergon. 1(3): 245-266.

Bereiter, S. R., and Miller, S. M. (1989). A field study of computer-controlled manufacturing
systems. I[EEFE Trans. Syst. Man Cybern. 19: 205-219.

Besnard, D., and Bastien-Toniazzo, M. (1999). Expert error in troubleshooting: An ex-
ploratory study in electronics. Int. J. Hum.-Comput. Stud. 50: 391-405.

Boshuizen, H. P. A., and Schmidt, H. G. (1992). The role of biomedical knowledge in clinical
reasoning by experts, intermediates, and novices. Cogn. Sci. 5: 121-152.

Brown, J. S., Burton, R. R, Bell, A. G. (1975). SOPHIE: A step toward creating a reactive
learning environment. International Journal of Man-Machine Studies 7(5): 675-696.

Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning.
Educ. Res. 18: 32-42.

Catrambone, R. C., and Holyoak, K. J. (1990). Learning subgoals and methods for solving
probability problems. Memory Cogn. 18(6): 593-603.

Chi, M. T. H., Bassock, M., Lewis, M. W., Reiman, P., and Glaser, R. (1989). Self-explanations:
How students study and use examples in learning to solve problems. Cogn. Sci. 13: 145—
182.

Chi, M. T. H., Feltovich, P. J., and Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cogn. Sci. 5: 121-152.

Chi, M. T. H., and Van Lehn, K. A. (1991). The content of physics self-explanations. J. Learn.
Sci. 1(1): 69-105.

Cooper, G., and Sweller, J. (1987). Effects of schema acquisition and rule automation on math-
ematical problem solving. J. Educ. Psychol. 79: 347-362.

Troubleshooting 11

David, R. (1983). Reasoning from first principles in electronic troubleshooting. Int. J. Man-
Mach. Stud. 19: 403-423.

Davis, J. K., and Haueisen, W. C. (1976). Field independence and hypothesis testing. Percept.
Motor Skills 43: 763-769.

De Croock, M. B. M., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). High versus low
contextual interference in simulation-based training of troubleshooting skill: Effects of
transfer performance and invested mental effort. Comput. Hum. Behav. 14(2): 249-267.

deKleer, J. (1985). How circuits work. In Bobrow, D. G. (ed.), Qualitative Reasoning About
Physical Systems, MIT Press, Cambridge, MA, pp. 205-280.

Dreyfus, H. L., and Dreyfus, S. E. (1986). Mind Over Machine, The Free Press, New York.

Elstein, A. S., Shulman, L. S., and Sprafka, S. A. (1978). Medical Problem Solving: An Analysis
of Clinical Reasoning, Harvard University Press, Cambridge, MA.

Ericsson, K. A., and Smith, J. (1991). Prospects of the limits of the empirical study of expertise:
An introduction. In Ericson, K. A., and Smith, J. (eds.), Toward A General Theory of
Expertise: Prospects and Limits, Cambridge University Press, New York, pp. 1-38.

Feurzig, W., and Ritter, F. (1988). Understanding reflective problem solving. In Pstoka, J.,
Massey, L. D., and Mutter, S. A. (eds.), Intelligent Tutoring Systems: Lessons Learned,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 435-450.

Flesher, J. W. (1993). An exploration of technical troubleshooting expertise in design, manu-
facturing, and repair contexts. J. Ind. Teach. Educ. 31(1): 34-56.

Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving.
Rev. Educ. Res. 54(3): 363-407.

Frederiksen, J. R., and White, B. Y. (1988). Implicit testing within an intelligent tutoring sys-
tem. Mach.-Mediat. Learn. 2: 351-372.

Frederiksen, J. R., and White, B. Y. (1993). The avionics job-family tutor: An approach to
developing generic cognitive skills within a job-situated context. In Artificial Intelligence
in Education: Proceedings of AI-ED 93, World Conference on Artificial Intelligence in
Education (pp. 513-520), Edinburgh, Scotland.

Gaba, D. (1991). Dynamic decision making in anesthesiology: Cognitive models and training
approaches. In Evans, D. A., and Patel, V. (eds.), Advance Models of Cognition for Med-
ical Training and Practice, Springer-Verlag, Heidelburg FRG, pp. 123-147.

Gitomer, D. H. (1988). Individual differences in troubleshooting. Hum. Perform. 1(2): 111-
131.

Gitomer, D. H., Steinberg, L. S., and Mislevy, R. J. (1995). Diagnostic assessment of a trou-
bleshooting skill in an intelligent tutoring system. In Nichols, P. D., Chipman, S. F., and
Brennan, R. L. (eds.), Cognitively Diagnostic Assessment, Lawrence Erlbaum Associates,
Hillsdale, NJ.

Gott, S. P., Hall, E. P., Pokorny, R. A., Dibble, E., and Glaser, R. (1993). A naturalistic study
of transfer: Adaptive expertise in technical domains. In Detterman, D., and Sternberg,
R. (eds.), Transfer on Trial: Intelligence, Cognition, and Instruction, Ablex Publishing,
Westport, CT, pp. 258-288.

Hall, E. P., Gott, S. P., and Pokorny, R. A. (1995). A procedural guide to cognitive task analysis:
The PARI methodology (Tech. Report AL/HR-TR-1995-0108). Brooks Air Force Base,
TX: Human Resources Directorate.

Hegarty, M. (1991). Knowledge and processes in mechanical problem solving. In Sternberg,
R. J., and Frensch, P. A. (eds.), Complex Problem Solving: Principles and Mechanisms,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 253-185.

Heller, L. C. (1982). An exploration of the effect of structure variables on mathematical word
problem-solving achievement (Doctoral dissertation, Rutgers University, 1982). Dissert.
Abstr. Int. 44: 416.

Henning, P. H. (1996). A Qualitative Study of Situated Learning by Refrigeration Service Tech-
nicians Working for a Supermarket Chain in Northeastern Pennsylvania. Unpublished
Ph.D. dissertation, The Pennsylvania State University, Pennsylvania.

Hernandez-Serrano, J., and Jonassen, D. H. (2003). The effects of case libraries on problem
solving. J. Comput.-Assist. Learn. 19.

112 Jonassen and Hung

Hoc, J. M., and Carlier, X. (2000). A method to describe human diagnostic strategies in relation
to the design of human-machine cooperation. Int. J. Cogn. Ergon. 4(4): 297-309.

Hung, W., and Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in
physics. International Journal of Science Education 28(5): 1-21.

Johnson, S. D. (1988). Cognitive analysis of expert and novice troubleshooting performance.
Perform. Improv. Q. 1(3): 38-54.

Johnson, S. D. (1989). A description of experts and novice performance differences on techni-
cal troubleshooting tasks. J. Ind. Teach. Educ. 26: 19-37.

Johnson, S. D. (1991). Training technical troubleshooters. Tech. Skills Train. 27(7): 9-16.

Johnson, S. D., Flesher, J. W., and Chung, S.-P. (1995, December). Understanding trou-
bleshooting styles to improve training methods. Paper presented at the Annual Meeting
of the American Vocational Association, Denver, CO. (ERIC Document Reproduction
Service No. ED 389 948).

Johnson, S. D., Flesher, J. W., Jehng, J. C., and Ferej, A. (1993). Enhancing electrical trou-
bleshooting skills in a computer-coached practice environment. Interact. Learn. Environ.
3(3): 199-214.

Johnson, S. D., and Satchwell, R. E. (1993). The effect of functional flow diagrams on appren-
tice aircraft mechanics’ technical system understanding. Perform. Improv. Q. 6(4): 73-91.

Johnson, W. B., and Norton, J. E. (1992). Modeling student performance in diagnostic tasks:
A decade of evolution. In Regian, J. W., and Shute, V. J. (eds.), Cognitive Approaches to
Automated Instruction, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 195-216.

Johnson, W. B., and Rouse, W. B. (2001). Training maintenance technicians for troubleshoot-
ing: Two experiments with computer simulations. In Sweezy, R. W., and Andrews, D.
H. (eds.), Readings in Training and Simulation: A 30-Year Perspective, Human Factors
Society, Santa Monica, CA.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educ. Technol. Res. Dev.
48(4): 63-85.

Jonassen, D. H., and Henning, P. (1999). Mental models: Knowledge in the head and knowl-
edge in the world. Educ. Technol. 39(3): 37-42.

Jonassen, D. H., and Hernandez-Serrano, J. (2002). Case-based reasoning and instructional
design: Using stories to support problem solving. Educ. Technol. Res. Dev. 50(2): 65-77.

Jonassen, D. H., Mann, E., and Ambruso, D. J. (1996). Causal modeling for structuring case-
based learning environments. Intell. Tutor. Media 6(3/4): 103-112.

Kelley, H. H. (1973). The process of causal attribution. Am. Psychol. 28: 107-128.

Kieras, D. E., and Bovair, S. (1984). The role of a mental model in learning to operate a device.
Cogn. Sci. 8: 255-273.

Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufman, New York.

Konradt, U. (1995). Strategies of failure diagnosis in computer-controlled manufacturing sys-
tems. Int. J. Hum.-Comput. Stud. 43: 503-521.

Kurland, L. C., Granville, R. A., and MacLaughlin, D. B. (1992). Design, development, and
implementation of an intelligent tutoring system for training radar mechanics to trou-
bleshoot. In Intelligent Instruction by Computer: Theory and Practice, Taylor & Francis,
Washington, DC.

Kyllonen, P. C., and Shute, V. J. (1989). A taxonomy of learning skills. In Ackerman, P. L.,
Sternberg, R. J., and Glaser, R. (eds.), Learning and Individual Differences, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Lajoie, S. P., and Lesgold, A. M. (1992a). Dynamic assessment of proficiency for solving pro-
cedural knowledge tasks. Educ. Psychol. 27(3): 365-384.

Lajoie, S. P., and Lesgold, A. (1992b). Apprenticeship training in the workplace: Computer-
coached practice environment as a new form of apprenticeship. In Farr, M. J., and Psotka,
J. (eds.), Intelligent Instruction in Computer: Theory and Practice, Taylor & Francis, Wash-
ington, DC.

Larkin, J., McDermott, J., Simon, D. P., and Simon, H. A. (1980). Expert and novice perfor-
mance in solving physics problems. Science 208: 1335-1342.

Troubleshooting 113

Lesgold, A., and Lajoie, S. (1991). Complex problem solving in electronics. In Sternberg,
R.J., and Frensch, P. A. (eds.), Complex Problem Solving: Principles and Mechanisms,
Lawrence Erlbaum Associates, Hillsdale, NJ.

McGuinness, C. (1986). Problem representation: The effects of spatial arrays. Memory Cogn.
14(3): 270-280.

MacPherson, R. T. (1998). Factors affecting technological trouble shooting skills. J. Ind. Teach.
Educ. 35(4): 5-28.

Mayer, R. E., and Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learn-
ing. Educ. Psychol. 38(1): 43-52.

Means, B., and Gott, S. P. (1988). Cognitive task analysis as a basis for tutor development:
Articulating abstract knowledge representation. In Psotka, J., Massey, L. D., and Mutter,
S. A. (eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence Erlbaum Associates,
Hillsdale, NJ, pp. 35-57.

Moran, A. P. (1986). Field independence and proficiency in electrical fault diagnosis. I[EEE
Trans. Syst. Man Cybern. SMC-16(1): 162-165.

Morris, N. M., and Rouse, W. B. (1985). Review and evaluation of empirical research in trou-
bleshooting. Hum. Factors 27(5): 503-530.

Mwangi, W., and Sweller, J. (1998). Learning to solve compare word problems: The effect of
example format and generating self-explanations. Cognit. Instr. 16: 173-199.

Newell, A., and Simon, H. A. (1972). Human Problem Solving, Printice-Hall, Englewood
Cliffs, NJ.

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional design:
Recent developments. Educ. Psychol. 38(1): 1-4.

Park, O. K., and Gittelman, S. S. (1992). Selective use of animation and feedback in computer-
based instruction. Educ. Technol. Res. Dev. 40(4): 27-38.

Patrick, J. (1993). Cognitive aspects of fault-finding training and transfer. Le Travail Humain
56(2/3): 187-209.

Patrick, J., and Haines, B. (1988). Training and transfer of fault-finding skill. Ergonomics 31(2):
193-210.

Perez, R. S. (1991). A view from troubleshooting. In Smith, M. U. (ed.), Toward a Unified
Theory of Problem Solving, Lawrence Erlbaum Associates, Hillsdale, NJ.

Perkins, D. N., and Grotzer, T. A. (2000, April). Models and Moves: Focusing on Dimen-
sions of Causal Complexity to Achieve Deeper Scientific Understanding. Paper presented
at the American Educational Research Association Annual Conference, New Orleans,
LA.

Pokorny, R. A., Hall, E. P., Gallaway, M. A., and Dibble, E. (1996). Analyzing components of
work samples to evaluate performance. Mil. Psychol. 8(3): 161-177.

Prochaska, J. O., DiClemente, C. C., and Norcross, J. C. (1992). In search of how people
change: Applications to addictive behaviors. Am. Psychol. 47(9): 1102-1114.

Rasmussen, J. (1984a). Strategies for state identification and diagnosis in supervisory control
tasks, and design of computer-based support systems. In Rouse, W. B. (ed.), Adv. Man-
Mach. Syst. Res., 1: 139-193.

Rasmussen, J. (1984b). Information Processing and Human-Machine Interaction: An Approach
to Cognitive Engineering, North-Holland, Amsterdam.

Reimann, P., and Chi, M. T. H. (1989). Human expertise. In Gilhooly, K. J. (ed.), Human and
Machine Problem Solving, Plenum, New York, pp. 161-191.

Renkl, A., and Atkinson, R. K. (2003). Structuring the transition from example study to prob-
lem solving in cognitive skill acquisition: A cognitive load perspective. Educ. Psychol.
38(1): 15-22.

Ronning, McCurdy, and Ballinger (1984, January). Individual differences: A third component
in problem-solving instruction. J. Res. Sci. Teach. 21(1): 71-82.

Rouse, W. B., Pellegrino, S. J., and Rouse, S. H. (1980). A rule-based model of human problem
solving performance in fault diagnosis tasks. IEEE Transactions on Systems Man, and
Cybernetics, SMC-10, 366-376.

114 Jonassen and Hung

Rowe, A. L., and Cooke, N. J. (1995). Measuring mental models: Choosing the right tool for
the job. Hum. Resour. Dev. Q. 6(3): 243-262.

Rowe, A. L., Cooke, N.J., Hall, E. P., and Halgren, T. L. (1996). Toward an on-line knowledge
assessment methodology: Building on the relationship between knowing and doing. J.
Exp. Psychol. Appl. 2(1): 31-47.

Schaafstal, A., and Schraagen, J. M. (1993). The acquisition of troubleshooting skill implication
for tools for learning. In Brouwer-Janse, M. D., and Harrington, T. L. (eds.), Human-
Machine Communication for Educational Systems Design, Springer-Verlag, New York,
pp- 107-118.

Schaafstal, A., and Schraagen, J. M. (2000). Training of troubleshooting: A structured, task an-
alytical approach. In Schraagen, J. M., Chipman, S. F., and Shalin, V. L. (eds.), Cognitive
Task Analysis, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 57-70.

Schaafstal, A., Schraagen, J. M., and van Berlo, M. (2000). Cognitive task analysis and innova-
tion of training: The case of structured troubleshooting. Hum. Factors 42(1): 75-86.

Schank, R. C. (1990). Tell Me a Story: Narrative and Intelligence, Northwestern University
Press, Evanston, IL.

Schmidt, H. G., and Boshuizen, H. G. A. (1993). On acquiring expertise in medicine. Educ.
Psychol. Rev. 5(3): 205-221.

Schon, D. A. (1993). The Reflective Practitioner—How Professionals Think in Action, Basic
Books, New York.

Sembugmorthy, V., and Chandrasekeran, B. (1986). Functional representations of devices and
compilation of diagnostic problem-solving systems. In Kolodner, J., and Riesbeck, C. K.
(eds.), Experience, Memory, and Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ,
pp. 47-53.

Sweller, J., and Cooper, G. A. (1985). The use of worked examples as a substitute for problem
solving in learning algebra. Cognit. Instr. 2: 59-89.

Swezey, R. W., Perez, R., and Allen, J. (1988). Effects of instructional delivery system
and training parameter manipulations on electromechanical performance. Hum. Factors
30(6): 751-762.

Thagard, P. (2000). Coherence in Thought and Action, MIT Press, Cambridge, MA.

Tarmizi, R. A., and Sweller, J. (1988). Guidance during mathematical problem solving. J. Educ.
Psychol. 80: 424-436.

Tenney, Y. J., and Kurland, L. C. (1988). The development of troubleshooting expertise in
radar mechanics. In Psotka, J., Massey, L. D., and Mutter, S. A. (eds.), Intelligent Tutoring
Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 59-83.

Tversky, B., Franklin, N., Taylor, H. A., and Bryant, D. J. (1994). Spatial mental models from
descriptions. J. Am. Soc. Inf. Sci. 45(9): 656-669.

Van Merrienboer, J. J. G., Kirschner, P. A., and Kester, L. (2003). Taking the load off a
learner’s mental mind: Instructional design for complex learning. Educ. Psychol. 38(1):
5-13.

Ward, M., and Sweller, J. (1990). Structuring effective worked examples. Cognition and
Instruction, 7(1): 1-39.

Zeitz, C. M., and Spoehr, K. T. (1989). Knowledge organization and the acquisition of proce-
dural expertise. Appl. Cogn. Psychol. 3: 313-336.

https://www.researchgate.net/publication/225547853

